

US 20050035932A1

(19) **United States**

(12) **Patent Application Publication**

Nishikawa et al.

(10) **Pub. No.: US 2005/0035932 A1**

(43) **Pub. Date: Feb. 17, 2005**

(54) **ELECTROLUMINESCENT DISPLAY DEVICE AND MANUFACTURING METHOD OF THE SAME**

(75) Inventors: **Ryuji Nishikawa, Gifu (JP); Kiyoshi Yoneda, Gifu (JP)**

Correspondence Address:

**MORRISON & FOERSTER LLP
1650 TYSONS BOULEVARD
SUITE 300
MCLEAN, VA 22102 (US)**

(73) Assignee: **Sanyo Electric Co., Ltd., Moriguchi-shi (JP)**

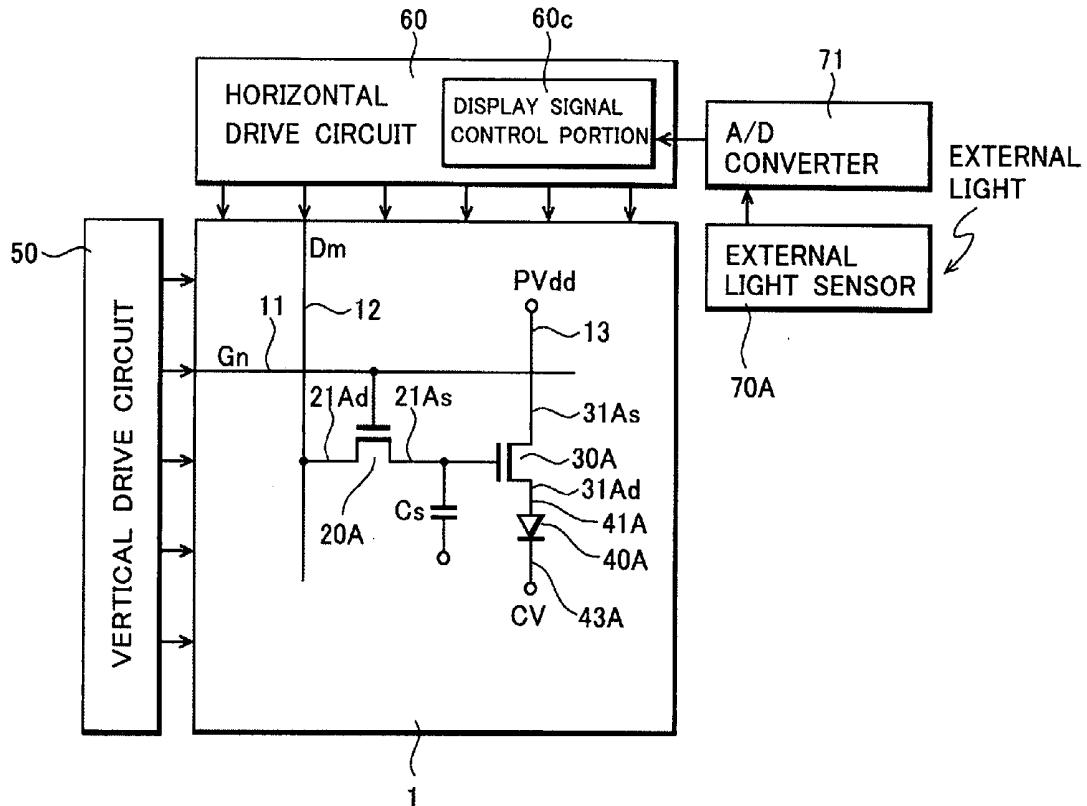
(21) Appl. No.: **10/874,760**

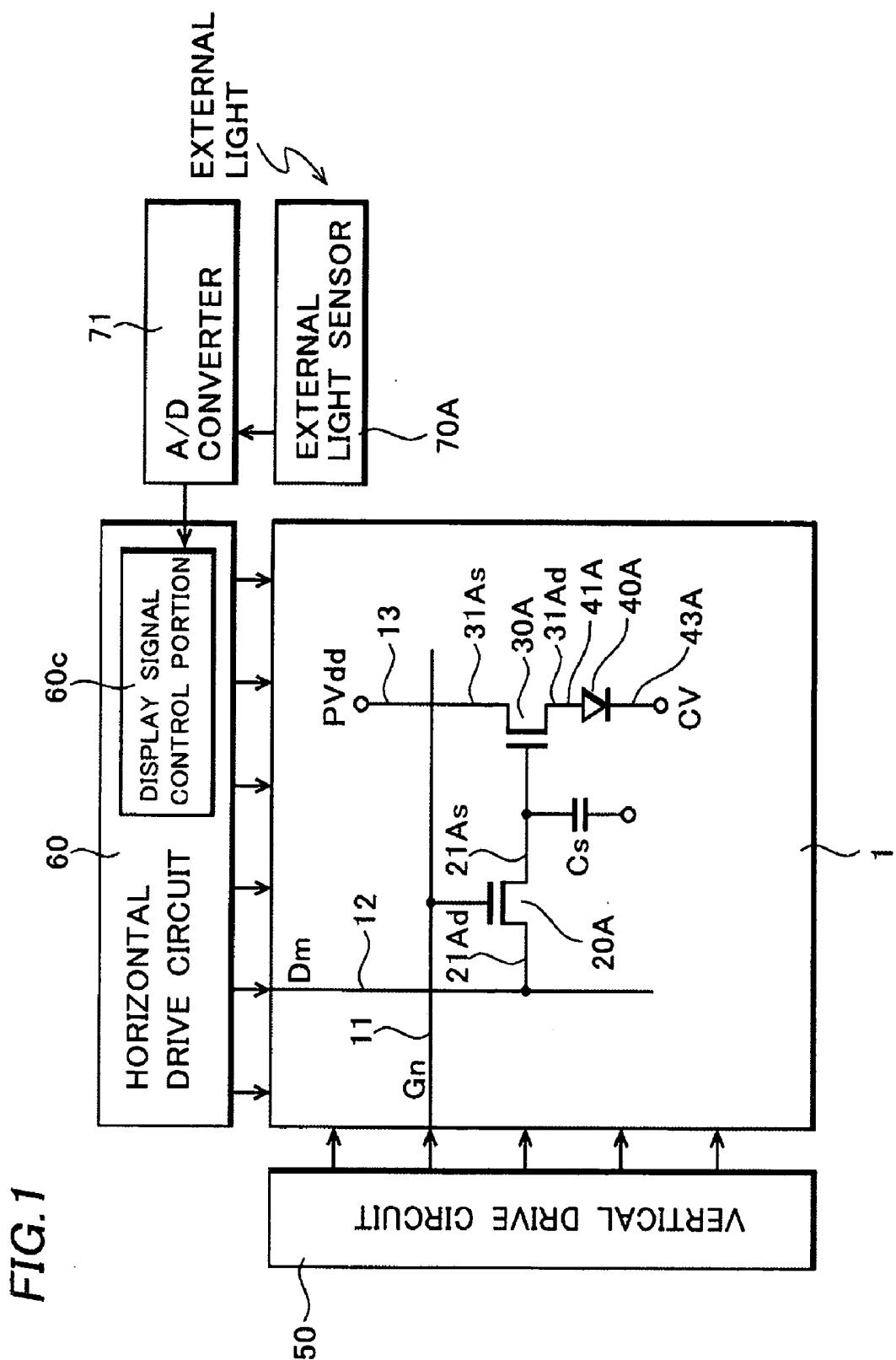
(22) Filed: **Jun. 24, 2004**

(30) **Foreign Application Priority Data**

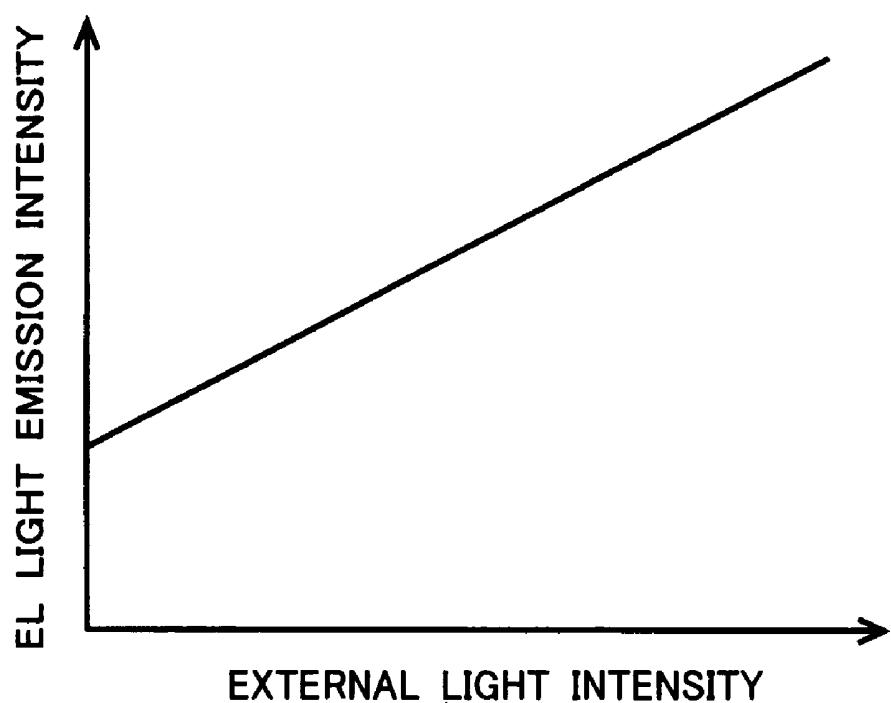
Jun. 30, 2003 (JP) 2003-186115

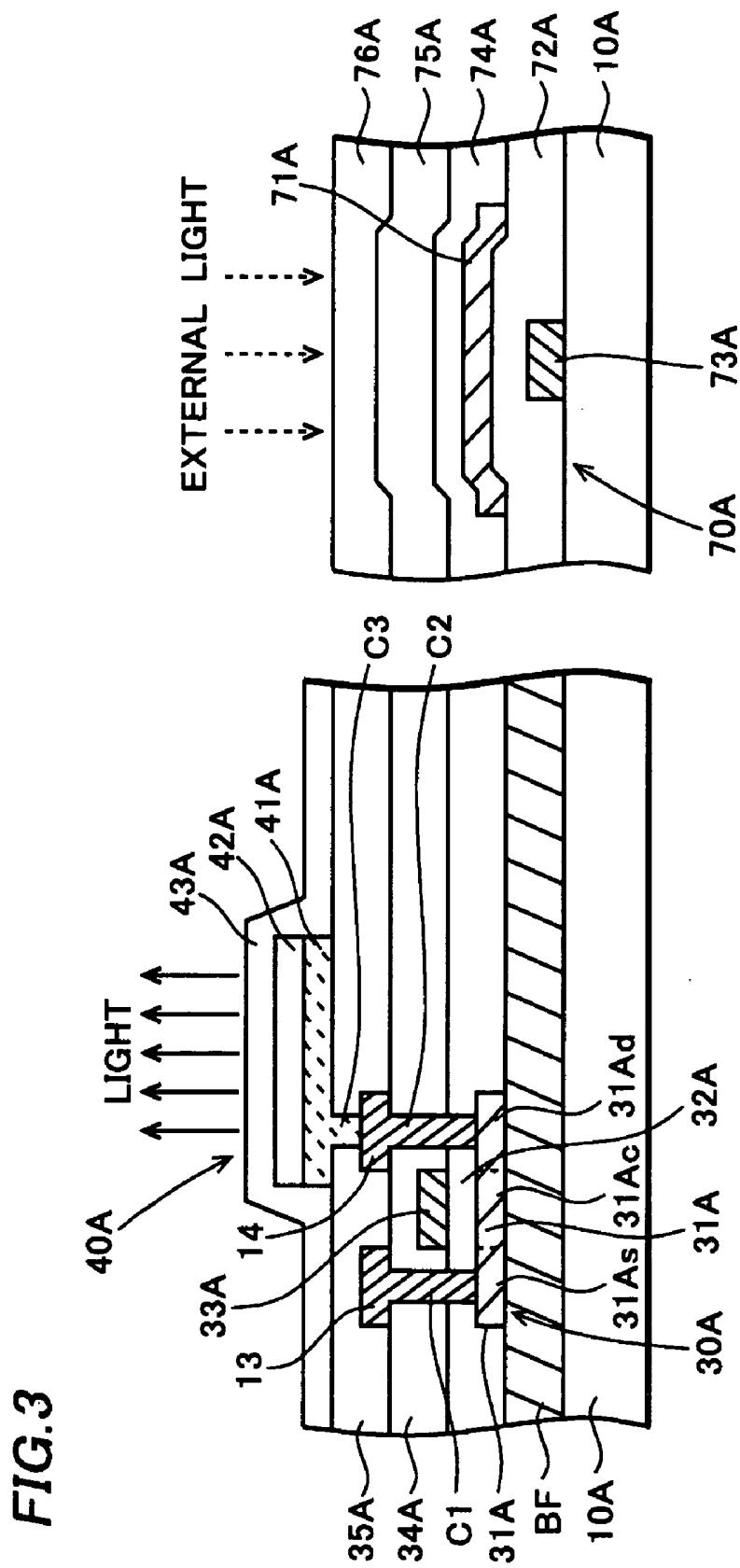
Publication Classification

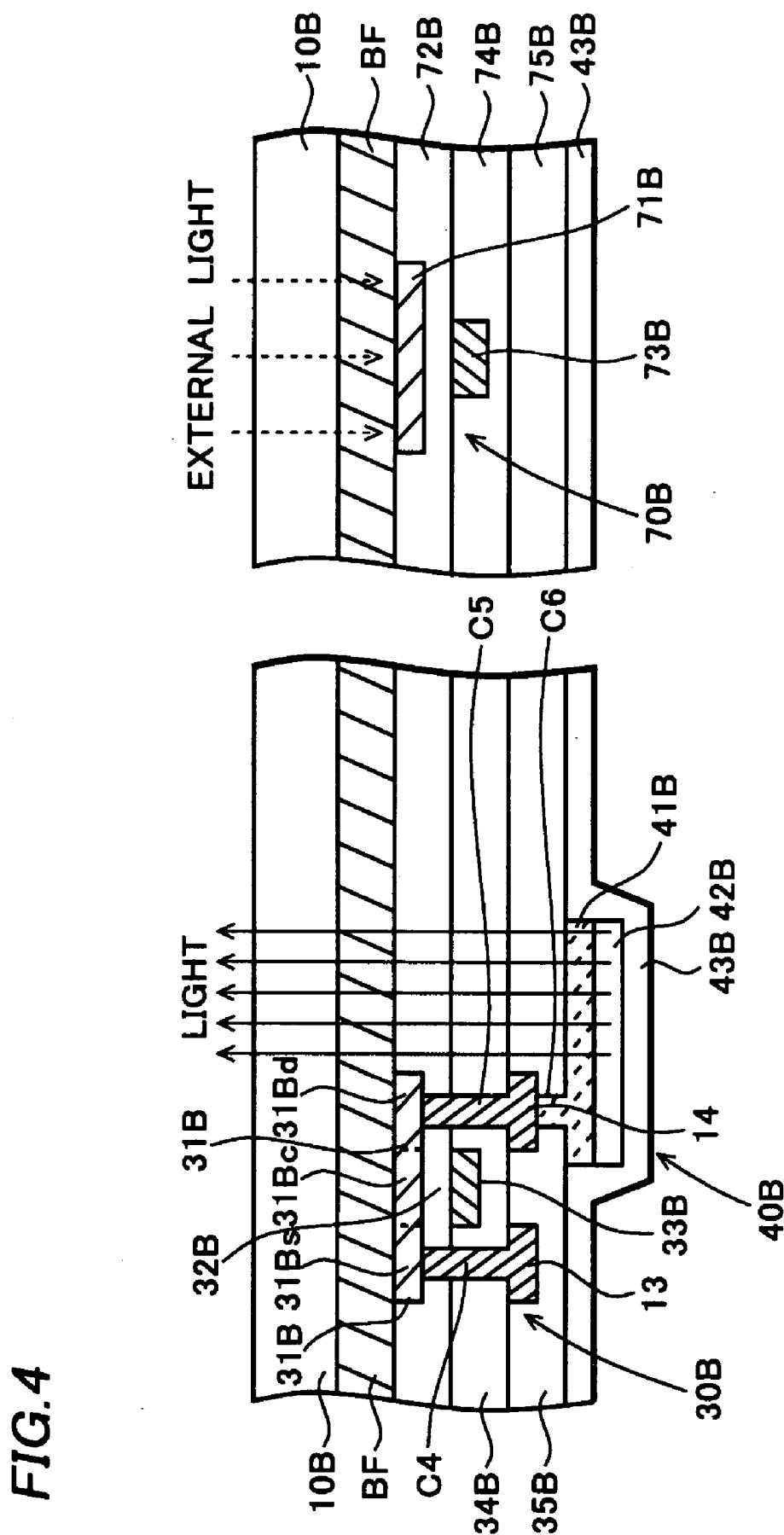

(51) **Int. Cl. 7 G09G 3/30**


(52) **U.S. Cl. 345/76**

(57)


ABSTRACT


This invention provides an organic EL display device automatically correcting light emission intensity of a display portion in accordance with intensity of external light, in which the number of components is reduced and sensitivity in detection of an external light sensor is improved. An organic EL element of top emission type, a driving TFT for driving the organic EL element, which is formed of a TFT of top gate type, and an external light sensor formed of a TFT of bottom gate type are integrally formed on a same glass substrate. Since the external light sensor is formed of a TFT of bottom gate type, external light is not blocked by a gate electrode, thereby improving sensitivity in detection of the external light.



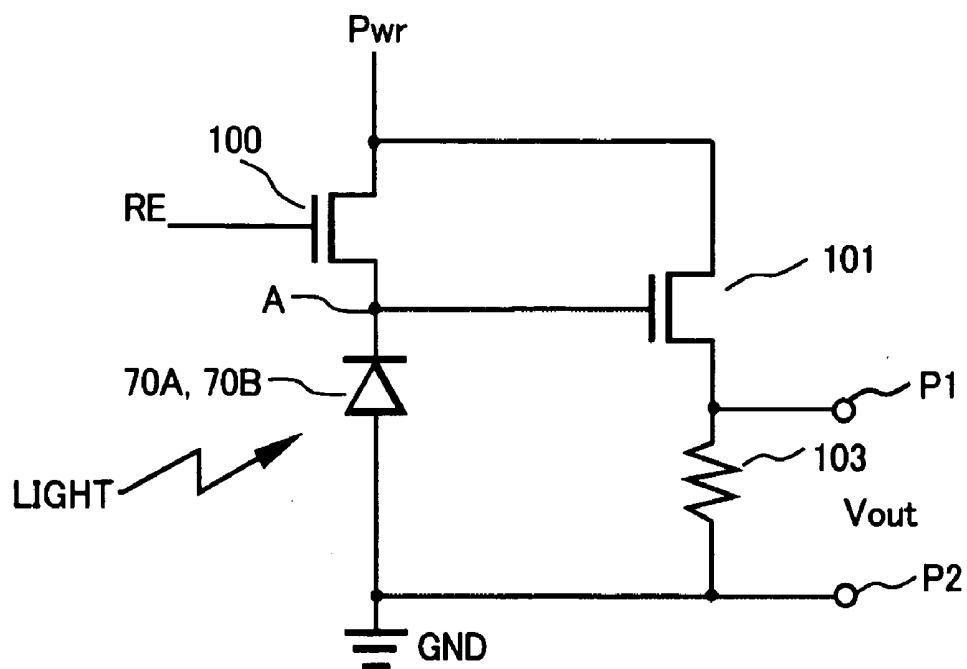
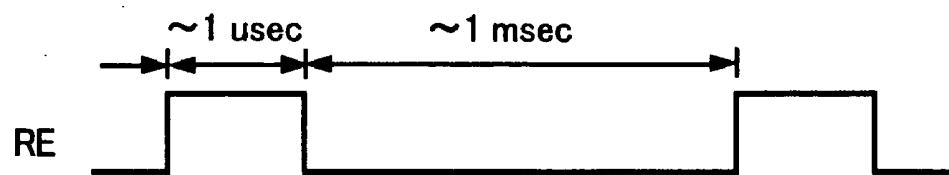



FIG.2

FIG.5**FIG.6****CIRCUIT 2**

ELECTROLUMINESCENT DISPLAY DEVICE AND MANUFACTURING METHOD OF THE SAME

CROSS-REFERENCE OF THE INVENTION

[0001] This invention is based on Japanese Patent Application No. 2003-186115, the content of which is incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] This invention relates to an electroluminescent display device, particularly having a function of automatically correcting light emission intensity of a display portion in accordance with external light intensity (brightness).

[0004] 2. Description of the Related Art

[0005] In recent years, an organic electroluminescent (hereafter, referred to as EL) display device using EL elements is receiving attention as a display device substituting for a CRT or an LCD. Particularly, an organic EL display device having thin film transistors (hereafter, referred to as TFTs) as switching elements for driving the organic EL elements has been developed.

[0006] The organic EL display device is applied to display panels used for cellular phones and personal digital assistants, for example. The organic EL display device, which can automatically correct light emission intensity of a display portion in accordance with intensity (brightness) of external light entering from outside of the display portion, has been also developed.

[0007] Such technologies are disclosed in the Japanese Patent Application Publication Nos. 2002-175029 and 2002-297096.

[0008] In the organic EL display device automatically correcting light emission intensity of the display portion in accordance with external light intensity, however, the display portion and an external light sensor detecting external light intensity are independently formed. This increases the number of components forming the organic EL display device, and makes a manufacturing procedure complex.

SUMMARY OF THE INVENTION

[0009] This invention provides an organic EL display device where a display portion and an external light sensor are integrally formed on the same substrate.

[0010] In the organic EL display device of the invention, an organic EL element, a driving transistor for driving the organic EL element, and an external light sensor are integrally formed on the same glass substrate. The organic EL element is formed of an organic EL element of top emission type, the driving transistor is formed of a thin film transistor of top gate type, and the external light sensor is formed of a thin film transistor of bottom gate type.

[0011] Furthermore, in an organic EL display device of the invention, the organic EL element is formed of an organic EL element of bottom emission type, the driving transistor is formed of a thin film transistor of top gate type, and the external light sensor is formed of a thin film transistor of top gate type, being integrally formed on a same glass substrate.

[0012] According to an aspect of this invention, the organic EL display device which automatically corrects the light emission intensity of the display portion in accordance with the external light intensity can be realized by integrally forming the organic EL element, the driving transistor, and the external light sensor on the same substrate. This can reduce the number of the components for the display device and simplify the manufacturing process. Furthermore, the external light sensor formed of a TFT is disposed with an active layer in a position where a gate electrode does not block the external light so that sensitivity in detection of the external light improves.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 is a schematic circuit diagram of an organic EL display device of a first embodiment of the invention.

[0014] FIG. 2 shows a relationship between external light intensity and EL light emission intensity in the organic EL display device of FIG. 1.

[0015] FIG. 3 is a schematic cross-sectional view of an organic EL element and its periphery, and an external light sensor of the first embodiment of the invention.

[0016] FIG. 4 is a schematic cross-sectional view of an organic EL element and its periphery, and an external light sensor of a second embodiment of the invention.

[0017] FIG. 5 is a circuit diagram showing a structure of a sensor circuit of the first and second embodiments of the invention.

[0018] FIG. 6 is an operational timing chart of the sensor circuit of FIG. 5.

DETAILED DESCRIPTION OF THE INVENTION

[0019] A structure of an organic EL display device of an embodiment of the invention will be described with reference to drawings.

[0020] FIG. 1 is a schematic circuit diagram of an organic EL display device of a first embodiment of the invention. In this embodiment, a plurality of pixels is disposed in a matrix in a display portion 1. FIG. 1 shows only one pixel.

[0021] A gate signal line 11 supplying a gate signal G_n for selecting a pixel and a drain signal line 12 supplying a display signal D_m to the pixel are formed crossing each other in each of pixels. A pixel selecting TFT (thin film transistor) 20A, an organic EL element 40A (e.g. organic EL element of top emission type) serving as a self-emissive element, and a driving TFT (e.g. TFT of top gate type) 30A for supplying an electric current to the organic EL element 40A are disposed in a region enclosed with these signal lines.

[0022] A gate of the pixel selecting TFT 20A is connected with the gate signal line 11 so as to be supplied with a gate signal G_n . A drain 21Ad of the pixel selecting TFT 20A is connected with the drain signal line 12 so as to be supplied with a display signal D_m . A source 21As of the pixel selecting TFT 20A is connected with a gate of the driving TFT 30A. A source 31As of the driving TFT 30A is supplied with positive power supply voltage PV_{dd} from a power supply line 13. A drain 31Ad of the driving TFT 30A is

connected with an anode **41A** of the organic EL element **40A**. A cathode **43A** of the organic EL element **40A** is supplied with power supply voltage CV.

[0023] The gate signal Gn is outputted from a vertical drive circuit **50** disposed on a periphery of the display portion **1**. The display signal Dm is outputted from a horizontal drive circuit **60** disposed on a periphery of the display portion **1**. The gate of the driving TFT **30A** is connected with a storage capacitor Cs. The storage capacitor Cs is provided to store the display signal Dm to be applied to the pixel for a field period by storing electric charge corresponding to the display signal Dm.

[0024] An external light sensor **70A** (e.g. bottom gate type) detecting external light intensity (brightness) is provided in a position where external light entering the display portion **1** can be detected. The external light sensor **70A** generates a predetermined current or voltage when receiving external light and electrically detects this, thereby detecting the external light intensity. An output terminal of the external light sensor **70A** is connected with an input terminal of an A/D converter **71**, and an output terminal of the A/D converter **71** is connected with an input terminal of the horizontal drive circuit **60**. The horizontal drive circuit **60** is provided with a display signal control portion **60c**. The display signal control portion **60c** has a function of changing amplitude of the display signal Dm in accordance with a digital signal (external light intensity) inputted from the A/D converter.

[0025] Next, an operation of the above-described organic EL display device will be described. When the gate signal Gn becomes high level for one horizontal period, the pixel selecting TFT **20A** turns on. Then, the display signal Dm is applied from the drain signal line **12** to the gate of the driving TFT **30A** through the pixel selecting TFT **20A**.

[0026] The conductance of the driving TFT **30A** changes in accordance with the display signal Dm supplied to the gate thereof, and a drive current in accordance with the conductance is supplied to the organic EL element **40A** through the driving TFT **30A**, thereby lighting the organic EL element **40A**. When the driving TFT **30A** turns off in accordance with the display signal Dm supplied to the gate, a drive current does not flow in the driving TFT **30A**, thereby turning off the light of the organic EL element **40A**.

[0027] In the above-described organic EL display device, light emission intensity of the organic EL element **40A** (hereafter, referred to as EL light emission intensity) provided in each of the pixels of the display portion **1** increases or decreases in accordance with intensity of external light entering from outside of the display portion **1**. A chart of FIG. 2 shows a relationship between the external light intensity and the EL light emission intensity. That is, the more the external light intensity increases, the more the EL light emission intensity increases at a predetermined rate.

[0028] Correction of EL light emission intensity in accordance with external light intensity shown in FIG. 2 is performed as described below. The external light sensor **70A** detects external light entering from outside of the display portion **1**, and outputs an analog signal (voltage or current) indicating external light intensity to the A/D converter **71**. The A/D converter **71** converts the analog signal entering from the external light sensor **70A** into a digital signal, and

outputs the digital signal indicating the external light intensity to the display signal control portion **60c** provided in the horizontal drive circuit **60**.

[0029] This display signal control portion **60c** changes an amplitude value of the display signal Dm in accordance with each of sample values of the digital signal indicating the external light intensity, and outputs it. That is, the display signal Dm outputted by the horizontal drive circuit **60** has amplitude corresponding to the external light intensity. Therefore, when the pixel selecting TFT **20** is in an on state, the conductance of the driving TFT **30A** increases or decreases in accordance with the amplitude of the display signal Dm applied to the gate of the driving TFT **30A**. This increases or decreases a drive current to be supplied to the organic EL element **40A**, thereby completing the correction of the EL light emission intensity of the organic EL element **40A** in accordance with the external light intensity.

[0030] Next, structures of the organic EL element **40A**, the driving TFT **30A**, and the external light sensor **70A** will be described in detail.

[0031] FIG. 3 is a schematic cross-sectional view of the organic EL element **40A** and its periphery, and the external light sensor **70A** of FIG. 1. The organic EL element **40A** is formed of an organic EL element of top emission type, the driving TFT **30A** for driving the organic EL element **40A** is formed of a TFT of top gate type, and the external light sensor **70A** is formed of a TFT of bottom gate type. The organic EL element **40A**, the driving TFT **30A**, and the external light sensor **70A** are formed on a same glass substrate **10A**. Hereafter, the structures of these elements will be described.

[0032] A buffer layer **BF** formed by laminating SiNx and SiO₂ in this order, an active layer **31A** formed by polycrystallizing an a-Si film by laser beam irradiation, a gate insulating film **32A** formed by laminating an SiO₂ film and an SiNx film in this order, and a gate electrode **33A** formed of a metal having a high melting point such as Cr (chromium) or Mo (molybdenum) are formed on the glass substrate **10A** in this order. The active layer **31A** is provided with a channel **31Ac**, a source **31As**, and a drain **31Ad**, the source **31As** and the drain **31Ad** being disposed on both sides of the channel **31Ac**, respectively.

[0033] An interlayer insulating film **34A** formed by laminating an SiO₂ film, an SiN_x film and an SiO₂ film in this order is formed on whole surfaces of the gate insulating film **32** and the gate electrode **33A**. A contact hole **C1** is provided in the interlayer insulating film **34A** in a position corresponding to the source **31As**, and a power supply line **13** supplied with positive power supply voltage PVdd is provided by filling the contact hole **C1** with metal such as Al (aluminum). A contact hole **C2** is provided in the interlayer insulating film **34A** in a position corresponding to the drain **31Ad**, and a drain electrode **14** is provided by filling the contact hole **C2** with a metal such as Al. Furthermore, a planarization insulating film **35A** for planarizing a surface, which is made of, for example, organic resin, is formed on the whole surface.

[0034] A contact hole **C3** is provided in the planarization insulating film **35A** in a position corresponding to the drain electrode **14**, and a metal such as Al fills the contact hole **C3**, so that the drain electrode **14** and the anode **41A** of the

organic EL element 40A are in contact with each other. The anode 41A is an electrode having characteristics of reflecting light without transmission. This anode 41A is made of metal such as Al, and can have a single-layered structure made of metal having a high light reflection rate or have a multi-layered structure made of ITO and a metal.

[0035] The organic EL element 40A is formed in each of the pixels, being isolated as an island. The organic EL element 40A is formed by laminating the anode 41A, an emissive layer 42A, and a transparent cathode 43A transmitting light emitted by the emissive layer 42A, in this order. The emissive layer 42A is formed by laminating, for example, a hole transport layer, an emissive layer, and an electron transport layer (not shown). The transparent cathode 43A is supplied with power supply voltage CV (not shown).

[0036] In this organic EL element 40A, holes injected from the anode 41A and electrons injected from the transparent cathode 43A are recombined in the emissive layer 42A. The recombined holes and electrons activate organic molecules forming the emissive layer 42A to generate excitons. Then, light is emitted from the emissive layer 42A in a process of radiation of the excitons and released outside from the transparent cathode 43A.

[0037] Furthermore, on the glass substrate 10A formed with the driving TFT 30A and the organic EL element 40A, the external light sensor 70A is disposed in a position where external light from outside of the display portion 1 can be received. The external light sensor 70A is formed of a TFT of bottom gate type.

[0038] That is, a gate electrode 73A made of a metal having a high melting point such as Cr or Mo, a gate insulating film 72A also serving as a buffer layer BF, an active layer 71A formed by poly-crystallizing an a-Si film by laser beam irradiation, insulating films 74A and 75A, and a planarization insulating film 76A are formed on the glass substrate 10A in this order. External light enters the active layer 71A from an exposed surface on the same side as the side of the transparent cathode 43A serving as an emitting surface. The external light sensor 70A electrically detects external light received by the active layer 71A, and outputs an electric current or voltage corresponding to the intensity of the external light. In the structure of this external light sensor 70A, the gate electrode 73A blocking external light does not exist between the surface where external light enters and the active layer 71A due to its bottom gate structure.

[0039] Therefore, an area of the active layer 71A receiving external light increases and thus sensitivity in detection of external light improves than a case where the external light sensor 70A is made of a TFT of top gate type (not shown) (laminated with a glass substrate, an active layer, a gate insulating film and a gate electrode in this order). The external light sensor 70A uses the TFT of bottom gate type as a photodiode, for example, thereby outputting a photocurrent corresponding to the external light.

[0040] As described above, in this embodiment, the organic EL element of top emission type 40A, the driving TFT 30A formed of a TFT of top gate type and the external light sensor 70A formed of a TFT of bottom gate type are integrally formed on the same glass substrate 10A. This

reduces the number of elements and simplifies a manufacturing procedure. For example, a manufacturing method as described below can be employed. The gate electrode 73A is formed on the glass substrate 10A, and the buffer layer BF also serving as the gate insulating film 72A is formed so as to cover the gate electrode 73A.

[0041] The active layers 31A and 71A are formed on the buffer layer BF serving as the gate insulating film 72A, and the gate insulating film 32A also serving as the insulating film 74A is formed thereon. Furthermore, the gate electrode 33A is formed thereon, and the interlayer insulating film 34A also serving as the insulating film 75A is formed so as to cover the gate electrode 33A. Then, the power supply line 13 and the drain electrode 14 are formed, and the planarization insulating films 35A and 76A are formed so as to cover these. The anode 41A is formed on the planarization insulating film 35A, and the emissive layer 42A and the transparent cathode 43A are formed, being laminated on the anode 41A.

[0042] Since the external light sensor 70A is formed of a TFT of bottom gate type, the external light reaches the active layer 71A without being blocked by the gate electrode 73A. This improves sensitivity in detecting the external light intensity.

[0043] Although not shown, the pixel selecting TFT 20A is formed of a TFT of top gate type, as is the case with the driving TFT 30A. Generally, compared to the TFT of bottom gate type, the TFT of top gate type can prevent currents from flowing in excess by activation of carriers in the active layer 31A with EL light emission, and has a higher carrier mobility. Therefore, the TFT of top gate type is suitable for the driving TFT 30A, and particularly for the pixel selecting TFT 20A. On the other hand, the external light sensor 70A utilizes a dark current flowing in the TFT, and thus does not need to have high carrier mobility.

[0044] Note that even the TFT of bottom gate type can also be applied to both the pixel selecting TFT 20A and the driving TFT 30A.

[0045] Next, a second embodiment of the invention will be described. In the first embodiment, the organic EL element of top emission type, the driving TFT of top gate type, and the external light sensor formed of the TFT of bottom gate type are integrally formed on the same substrate. In the second embodiment, however, an organic EL element of bottom emission type, a driving TFT of top gate TFT, and an external light sensor of a TFT of top gate type are integrally formed on the same substrate. This embodiment will be described below with reference to drawings in detail. The organic EL element 40A of FIG. 1 is replaced by an organic EL element of bottom emission type 40B, and the external light sensor 70A is replaced by an external light sensor 70B formed of a TFT of top gate type. A schematic circuit diagram of this embodiment is the same as that of FIG. 1.

[0046] FIG. 4 is a schematic cross-sectional view of the organic EL element 40B and its periphery, and the external light sensor 70B in this embodiment. As shown in FIG. 4, in the embodiment using the organic EL element 40B of bottom emission type, light emitted by the organic EL element 40B is emitted from an exposed surface of a transparent glass substrate 10B, different from the first

embodiment. Furthermore, on a surface on an opposite side of the exposed surface of the transparent glass substrate **10B**, the driving TFT **30B** of top gate type is formed.

[0047] That is, the buffer layer **BF** formed by laminating, for example, SiN_x and SiO_2 in this order, an active layer **31B** formed by poly-crystallizing an a-Si film by laser beam irradiation, a gate insulating film **32B** and a gate electrode **33B** made of a metal having a high melting point such as Cr or Mo and disposed in a position corresponding to the active layer **31B** are formed on the transparent glass substrate **10B** in this order. The active layer **31B** is formed with a channel **31Bc**, a source **31Bs**, and a drain **31Bd**, the source **31Bs** and the drain **31Bd** being disposed on both sides of the channel **31Bc**, respectively.

[0048] An interlayer insulating film **34B** formed by laminating an SiO_2 film, an SiN_x film and an SiO_2 film in this order is formed on whole surfaces of the gate insulating film **32B** and the gate electrode **33B**. A contact hole **C4** is provided in the interlayer insulating film **34B** in a position corresponding to the source **31Bs**, and a power supply line **13** supplied with positive power supply voltage **PVdd** is provided therein by filling the hole with a metal such as Al. A contact hole **C5** is provided in the interlayer insulating film **34B** in a position corresponding to the drain **31Bd**, and a drain electrode **14** is provided by filling the hole with a metal such as Al.

[0049] Furthermore, a planarization insulating film **35B** for planarizing a surface, which is made of, for example, organic resin, is formed on the whole surface. A contact hole **C6** is provided in the planarization insulating film **35B** in a position corresponding to the drain electrode **14**, and metal such as Al fills the hole so that the drain electrode **14** and the anode **41B** of the organic EL element **40B** are in contact with each other. This transparent anode **41B** is a transparent electrode made of ITO (indium tin oxide) and so on.

[0050] The organic EL element **40B** is formed in each of the pixels, being isolated as an island. The organic EL element **40B** is formed by laminating the transparent anode **41B**, an emissive layer **42B**, and a cathode **43B** supplied with power supply voltage **CV** (not shown) (for example, made of Al, or magnesium indium alloy) in this order. Light emitted by the emissive layer **42B** is emitted from the transparent glass substrate **10B** through the transparent anode **41B**.

[0051] Furthermore, on the glass substrate **10B** formed with the driving TFT **30B** and the organic EL element **40B**, the external light sensor **70B** is disposed in a position where the external light from outside of the display portion **1** can be received. The external light sensor **70B** is formed of a TFT of top gate type.

[0052] That is, on the transparent glass substrate **10B**, the buffer layer **BF** formed by laminating, for example, SiN_x and SiO_2 , in this order, an active layer **71B** formed by poly-crystallizing an a-Si film by laser beam irradiation, a gate insulating film **72B**, a gate electrode **73B** made of a metal having a high melting point such as Cr or Mo, an interlayer insulating film **74B**, and a planarization insulating film **75B** are formed in this order. Furthermore, a cathode **43B** of the organic EL element **40B** can be formed, extending over the planarization insulating film **75B**. In this case, the external light can be blocked from entering a back surface of the external light sensor **70B**.

[0053] External light enters the active layer **71B** from an exposed surface on the same side as the side of the transparent glass substrate **10B** serving as an emitting surface. The external light sensor **70B** electrically detects external light received by the active layer **71B**, and outputs an electric current or voltage corresponding to the intensity of the light source.

[0054] In the structure of this external light sensor **70B**, a gate electrode **73B** blocking external light does not exist between the transparent glass substrate **10B** where external light enters and the active layer **71B**. This increases an area of the active layer **71B** which receives external light, and thus improves sensitivity in detecting the external light than a case where the external light sensor **70B** is formed of a TFT of bottom gate type (formed by laminating a transparent glass substrate, a gate electrode, a gate insulating film, and an active layer in this order).

[0055] Furthermore, although not shown, the pixel selecting TFT **20A** is formed of a TFT of top gate type, as is the case with the driving TFT **30A**.

[0056] In the above-described embodiment using the organic EL element **40B** of bottom emission type, the driving TFT **30B** made of a TFT of top gate type and the external light sensor **70B** are formed on the same transparent glass substrate **10B** so that the number of the elements decreases.

[0057] Since the external light sensor **70B** is formed of a TFT of top gate type, the external light reaches the active layer **71B** without being blocked by the gate electrode **73B**. This improves sensitivity in detecting the external light intensity.

[0058] Furthermore, the driving TFT **30B** and the external light sensor **70B** are formed of a TFT of top gate type, these can be formed in a same process. This can simplify a manufacturing process. For example, a manufacturing process described below can be employed.

[0059] The buffer layer **BF** is formed on the glass substrate **10B**, and the active layers **31B** and **71** are formed on the buffer layer **BF**. The gate insulating films **32B** and **72B** are formed on the active layers **31B** and **71**. Furthermore, the gate electrodes **33B** and **73B** are formed, and the interlayer insulating films **34B** and **74B** are formed on the insulating films **32B** and **72B** so as to cover the gate electrodes **33B** and **73B**.

[0060] Then, the power supply line **13** and the drain electrode **14** are formed thereon, and the planarization insulating films **35B** and **75B** are formed so as to cover the power supply line **13** and the drain electrode **14**. The transparent anode **41B** is formed on this planarization insulating film **35B**, and the emissive layer **42B** and the cathode **43B** are formed, being laminated on the transparent anode **41B**. Furthermore, the cathode **43B** of the organic EL element **40B** can be formed extending over the planarization insulating film **75B** on the external light sensor **70B**, in order to block external light from entering a back surface of the external light sensor **70B**.

[0061] Next, a sensor circuit using the external light sensor **70A** or **70B** will be described with reference to FIGS. 5 and 6. This sensor circuit is a circuit for converting light received by the external light sensor **70A** or **70B** into output

voltage V_{out} corresponding thereto. This sensor circuit can be commonly applied to the above first and second embodiments. **FIG. 5** is a circuit diagram showing a structure of the sensor circuit, and **FIG. 6** is an operational timing chart of this sensor circuit.

[0062] In **FIG. 5**, the external light sensor **70A** or **70B** having a diode structure and a first resetting TFT **100** are connected in series between electric potential **Pwr** and ground potential **GND** (electric potential **Pwr**>ground potential **GND**). A second resetting TFT **101** and a resistor **103** are connected in series between the electric potential **Pwr** and the ground potential **GND**. These series circuits are connected in parallel. A gate of the first resetting TFT **100** is applied with a resetting signal **RE**. A gate of the second resetting TFT **101** is supplied with an electric potential of a connection point **A** between the external sensor **70A** or **70B** and the resetting TFT **100**.

[0063] Then, output voltage V_{out} between terminals **P1** and **P2**, which is outputted from the terminals **P1** and **P2** at ends of the resistor **103**, is taken as external light detection voltage, and inputted in the above-described A/D converter **71**.

[0064] Note that the first and second resetting TFTs **100** and **101** are of N-channel type in this embodiment, although these TFTs **100** and **101** may be of N-channel type or of P-channel type.

[0065] Next, an operation of this circuit will be described with reference to **FIG. 6**. When the resetting signal **RE** becomes high level, the first resetting TFT **100** turns on. Accordingly, the gate of the second resetting TFT **101** is applied with electric potential **Pwr** through the first resetting TFT **100** so that the second resetting TFT **101** also turns on. In this resetting time, the output voltage V_{out} becomes approximately **Pwr** (predetermined value) when the impedance of the second resetting TFT **101** is smaller enough than a resistance value of the resistor **103**, and does not depend on a photocurrent flowing in the external light sensor **70A** or **70B**.

[0066] Next, when the resetting signal **RE** becomes low level for the sensing procedure, the first resetting TFT **100** turns off. The connection point **A** between the external light sensor **70A** or **70B** and the first resetting TFT **100** becomes in a floating state. However, a leakage at the external light sensor **70A** or **70B** makes a level of the connection point **A** close to the ground voltage **GND**, and thus the potential of the gate of the second resetting TFT **101** reduces, thereby increasing impedance of the second resetting TFT **101**. As a result, the output voltage V_{out} becomes slightly smaller than **Pwr**.

[0067] Then, when the external light sensor **70A** or **70B** receive light, a photocurrent (a reverse bias current of a diode) corresponding to the light is generated so that electric potential of the external light sensor **70A** or **70B** (electric potential at the connection point **A**) reduces. This reduces the potential of the gate of the second resetting TFT **101**, thereby increasing the impedance of the second resetting TFT **101**. Accordingly, the output voltage V_{out} reduces.

[0068] Therefore, in the above-described operation, the output voltage V_{out} corresponding to external light intensity can be obtained, and the amplitude of the display signal **Dm** is controlled by using this output voltage V_{out} , thereby

enabling correction of light emission intensity of the organic EL elements **40A** and **40B**. Note that in this sensor circuit the external light sensor **70A** and **70B** are not limited to a diode structure, but other photo sensors can be also applicable.

[0069] Although the organic EL elements **40A** and **40B** are used in the above described first and second embodiments, the invention is not limited to these, but non-organic EL elements can be used instead.

What is claimed is:

1. An electroluminescent display device comprising:
an electroluminescent element of top emission type disposed on a substrate; and
an external light sensor disposed on the substrate and comprising a thin film transistor of bottom gate type, the external light sensor being configured to be used for correcting light emission intensity of the electroluminescent element.
2. The electroluminescent display device of claim 1, further comprising a driving transistor of top gate type driving the electroluminescent element.
3. The electroluminescent display device of claim 1, further comprising a control portion adjusting an amplitude of a display signal supplied to the electroluminescent element in accordance with an output of the external light sensor.
4. The electroluminescent display device of claim 1, wherein the thin film transistor is configured to operate as a photodiode.
5. The electroluminescent display device of claim 3, further comprising a sensor circuit converting the output of the external light sensor into a voltage and supplying an output of the sensor circuit to the control portion.
6. The electroluminescent display device of claim 5, wherein the sensor circuit includes a first resetting transistor and the external light sensor connected in series between a first electric potential and a second electric potential and includes a second resetting transistor and a resistor connected in series between the first and second electric potentials, the first transistor is configured to receive a resetting signal at a gate thereof, and a gate of the second resetting transistor is connected to a connection point between the first resetting transistor and the external light sensor.
7. The electroluminescent display device of claim 2, wherein the driving transistor comprises a first insulating film disposed on the substrate, a first active layer formed on the first insulating film, a third insulating film disposed on the first insulating film and the first active layer, and a first gate electrode formed on the third insulating film, the external light sensor comprises a second gate electrode formed on the substrate, a second insulating film disposed on the substrate and the second gate electrode, and a second active layer formed on the second insulating film, and the first and second insulating films are each part of a same insulating layer.
8. The electroluminescent display device of claim 7, wherein the external light sensor further comprises a fourth insulating film disposed on the second insulating film and the second active layer, wherein the third and fourth insulating films are each part of another same insulating layer.
9. The electroluminescent display device of claim 7, wherein the first and second active layers are made of a same active layer material.

10. An electroluminescent display device comprising:
an electroluminescent element of bottom emission type
disposed on a substrate; and
an external light sensor disposed on the substrate and
comprising a thin film transistor of top gate type, the
external light sensor being configured to be used for
correcting light emission intensity of the electrolumi-
nescent element.

11. The electroluminescent display device of claim 10,
further comprising a driving transistor of top gate type
driving the electroluminescent element.

12. The electroluminescent display device of claim 10,
further comprising a control portion adjusting an amplitude
of a display signal supplied to the electroluminescent ele-
ment in accordance with an output of the external light
sensor.

13. The electroluminescent display device of claim 10,
wherein the thin film transistor is configured to operate as a
photodiode.

14. The electroluminescent display device of claim 12,
further comprising a sensor circuit converting the output of
the external light sensor into a voltage and supplying an
output of the sensor circuit to the control portion.

15. The electroluminescent display device of claim 14,
wherein the sensor circuit includes a first resetting transistor
and the external light sensor connected in series between a
first electric potential and a second electric potential and
includes a second resetting transistor and a resistor con-
nected in series between the first and second electric poten-
tials, the first transistor is configured to receive a resetting
signal at a gate thereof, and a gate of the second resetting
transistor is connected to a connection point between the
first resetting transistor and the external light sensor.

16. The electroluminescent display device of claim 11,
wherein the driving transistor comprises a first active layer
formed on the substrate, a first insulating film disposed on
the substrate and the first active layer, and a first gate
electrode formed on the first insulating film, the external
light sensor comprises a second active layer formed on the
substrate, a second insulating film disposed on the substrate
and the second active layer, and a second gate electrode
formed on the second insulating film, and the first and
second insulating films are each part of a same insulating
film.

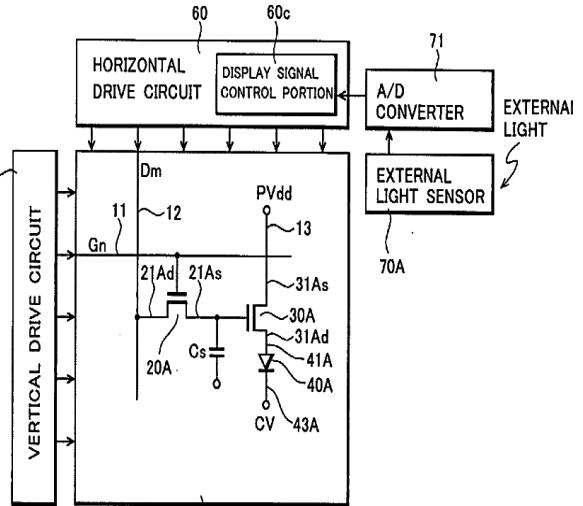
17. The electroluminescent display device of claim 16,
wherein the first and second active layers are made of a same
active layer material.

18. The electroluminescent display device of claim 16,
wherein the first and second gate electrodes are made of a
same gate electrode material.

19. The electroluminescent display device of claim 10,
wherein the electroluminescent element comprises two elec-
trodes and an organic material layer disposed between the
two electrodes, and one of the two electrodes that is disposed
further from the substrate than another of the two electrodes
covers the external light sensor.

20. A method of manufacturing an electroluminescent
display device having an electroluminescent element dis-
posed on a substrate, a driving transistor disposed on the
substrate and driving the electroluminescent element, and an
external light sensor disposed on the substrate and compris-
ing a transistor, the method comprising:
forming a gate electrode of the external light sensor on the
substrate;
depositing a first insulating film on the substrate and the
gate electrode of the external light sensor;
depositing a layer of an active layer material on the first
insulating film;
patterning the deposited layer to form an active layer of
the driving transistor and an active layer of the external
light sensor;
depositing a second insulating film on the first insulating
film, the active layer of the driving transistor and the
active layer of the external light sensor; and
forming a gate electrode of the driving transistor on the
second insulating film.

21. A method of manufacturing an electroluminescent
display device having an electroluminescent element dis-
posed on a substrate, a driving transistor disposed on the
substrate and driving the electroluminescent element, and an
external light sensor disposed on the substrate and compris-
ing a transistor, the method comprising:
depositing a layer of an active layer material on the
substrate;
patterning the deposited layer to form an active layer of
the driving transistor and an active layer of the external
light sensor;
depositing a first insulating film on the active layer of the
driving transistor and the active layer of the external
light sensor; and
forming, on the first insulating film, a gate electrode of the
driving transistor and a gate electrode of the external
light sensor.


22. The method of manufacturing the electroluminescent
display device of claim 21, further comprising depositing a
second insulating film on the substrate prior to the deposit-
ing of the layer of the active layer material.

* * * * *

专利名称(译)	电致发光显示装置及其制造方法		
公开(公告)号	US20050035932A1	公开(公告)日	2005-02-17
申请号	US10/874760	申请日	2004-06-24
[标]申请(专利权)人(译)	三洋电机株式会社		
申请(专利权)人(译)	SANYO ELECTRIC CO. , LTD.		
当前申请(专利权)人(译)	SANYO ELECTRIC CO. , LTD.		
[标]发明人	NISHIKAWA RYUJI YONEDA KIYOSHI		
发明人	NISHIKAWA, RYUJI YONEDA, KIYOSHI		
IPC分类号	H05B33/08 G09F9/00 G09F9/30 G09G3/20 G09G3/30 G09G3/32 H01J1/62 H01L27/14 H01L27/146 H01L27/32 H01L51/50 H05B33/00 H05B33/10 H05B33/14		
CPC分类号	G09G3/3233 G09G2300/0426 G09G2300/08 G09G2320/043 G09G2320/0626 H01L2251/5315 G09G2360/145 G09G2360/148 H01L27/3227 H01L27/3269 G09G2360/144		
优先权	2003186115 2003-06-30 JP		
外部链接	Espacenet USPTO		

摘要(译)

本发明提供一种有机EL显示装置，其根据外部光的强度自动校正显示部分的发光强度，其中减少了部件的数量并提高了外部光传感器的检测灵敏度。顶部发射型有机EL元件，用于驱动有机EL元件的驱动TFT，由顶栅型TFT形成，以及由底栅型TFT形成的外部光传感器一体地形成在同一基质上。由于外部光传感器由底栅型TFT形成，外部光不被栅电极阻挡，从而提高了外部光检测的灵敏度。

